Abstract
Researchers are concentrating on developing technologies to identify and caution drivers against driving while distracted because it is a major cause of traffic accidents. According to the National Highway Traffic Safety Administrator's report, distracted driving is to blame for roughly one in every five car accidents.Our goal is to create an accurate and dependable method for identifying distracted drivers and alerting them to their lack of focus. We take inspiration from the success of convolutional neural networks in computer vision to do this. Our strategy entails putting in place a CNN-based system that can recognize when a driver is distracted as well as pinpoint the precise cause of their preoccupation. Real-time detection, however, necessitates three apparently mutually exclusive requirements for an optimal network: a small number of parameters, high accuracy, and fast speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.