Abstract

In this work, we propose an approach to determine terrain traversability for a car-like robot. Our approach has two main modules: a neural network classifier that makes use of sensors' readings to assign traversability levels to control inputs of the robot, and a second neural network that, based on the outputs of the first network, mimics the control selection performed by a human driver. The approach incorporates sensor fusion from a variety of sources to enhance the traversability estimation, and it is trained employing a semi-supervised learning scheme with examples resulting from the interaction of the car with the environment. This semi-supervised scheme avoids exhausting manual labeling and is built on the premise that there is a correlation between the terrain traversability and the required and observed behaviors of the vehicle. The method is validated with data obtained from a physical electric car.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.