Abstract
This paper proposes and studies the physical layer security of a mixed radio frequency/free space optical (RF/FSO) system based on reconfigurable intelligent surface (RIS)-aided jamming to prevent eavesdropping. This work considers Nakagami-m fading for the RF links and Málaga (M) turbulence for the FSO links. A two-hop decode-and-forward (DF) relaying method was used and the eavesdropper actively eavesdropped on the information transmitted by the RF link. The eavesdropper was thwarted by a wireless-powered jammer that transmits jamming signals, which were reflected by the RIS to the eavesdropper to ensure secure communication in the mixed RF/FSO system. The expressions of secrecy outage probability (SOP) and average secrecy capacity (ASC) of the RIS-aided mixed RF/FSO system were derived for the system model discussed above. The Monte Carlo method was utilized to verify the accuracy of these expressions. In the RIS-aided mixed RF/FSO system, the effects of the time switching factor, energy conversion efficiency, and average interference noise ratio on the system secrecy outage probability were analyzed and compared to the RIS-free mixed RF/FSO system. Meanwhile, the influence of the number of RIS reflecting elements, link distances before and after reflection, and fading severity parameter on the security performance of a mixed RF/FSO system assisted by RIS were also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.