Abstract
Reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA) are promising techniques to develop next-generation wireless systems. While RIS has huge potential to create massive device connectivity, NOMA exhibits its spectrum efficient communication among multiple access approaches. RIS is a passive device made up of low-cost meta-surfaces which can control the propagation of radio waves, and it is easily deployable in lots of applications in the Internet of Things. The full-duplex nature of RIS has also been a major reason for its consideration of major emerging and trending technologies. In this paper, we aim to investigate the secrecy performance of the RIS-NOMA-assisted Internet of Things (IoT) systems in the presence of two legitimate users who belong to a cluster, and those devices are associated with the existence of an eavesdropper situated close to such a cluster. This paper considers the devices in the presence of RIS and an eavesdropper. As main performance metrics, the closed-form expressions for secrecy outage probability (SOP) and strictly positive secrecy capacity (SPSC) are derived to evaluate the performance of legitimate users. Simulations are performed in support of the Monte-Carlo method, and the obtained results show that in most of the cases, the number of meta-surfaces in RIS and signal-to-noise ratio (SNR) levels at the source also plays a pivotal role in influencing the secure performance of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.