Abstract
Defect-free atom arrays provide new possibilities for exploring exotic quantum phenomena and realizing quantum computing. However, quickly and efficiently preparing defect-free atom arrays poses challenges. This paper proposes an innovative parallel rearrangement method, namely the parallel compression filling algorithm (PCFA), wherein multiple movable optical tweezers operate simultaneously. By limiting the shape of the initial loading, the method reduces movement complexity. The simulation comparisons show that this algorithm is more efficient in preparing defect-free atom arrays and can also be applied to the generation of other periodic structure arrays. The simulation results show that, in most cases, preparing a defect-free array of 400 atoms requires no more than 30 steps.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have