Abstract
Tissue engineering is a discipline at the leading edge of the field of computer assisted intervention. This multidisciplinary engineering science attempts to meet the reparative and regenerative needs of tissues and organs based on the notion of design and fabrication of scaffolds- porous, three-dimensional "trellis-like" biomimetic structures that, on implantation, provide a viable environment to recuperate and regenerate damaged cells. Existing scaffold fabrication strategies produce sub-optimal porous labyrinths with contra-naturam straight edges. The biomorphic geometry that mimics the secundam-naturam substrate would be one that is continuous through all space, partitioned into two not-necessarily-equal sub-spaces by a non-intersecting, two-sided surface. Minimal surface geometry is not only ideal to describe such a space but is also the preferentially assumed geometry in natural and pathological or manipulated cells. We present results on the premier attempt in computer-controlled fabrication, modulation, and mechanical characterization of tissue engineering scaffolds based on triply periodic minimal surfaces (TPMS). We also present novel strategies to realize coterminous seeding-feeding networks thereby guaranteeing blood/nutrient supply to the proliferating cells at close proximity. This initiative of linking Schwann's 1838 cell theory with Schwarz's 1865 discovery of TPMS is a significant step to fabricate the previously elusive optimal biomorphic tissue analogs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.