Abstract

Tissue engineering is a discipline at the leading edge of the field of computer assisted intervention. This multidisciplinary engineering science is based on the notion of design and fabrication of scaffolds- porous, three-dimensional "trellis-like" biomimetic structures that, on implantation, provide a viable environment to recuperate and regenerate damaged cells. Existing CAD-based approaches produce porous labyrinths with contra-naturam straight edges. The biomorphic geometry that mimics the secundam-naturam substrate would be one that is continuous through all space, partitioned into two not-necessarily-equal sub-spaces by a non-intersecting, two-sided surface. Minimal surfaces are ideal to describe such a space. We present results on the premier attempt in computer controlled fabrication and mechanical characterization of Triply Periodic Minimal Surfaces [TPMS]. This initiative is a significant step to link Schwann's 1838 cell theory with Schwarz's discovery of TPMS in 1865 to fabricate the previously elusive optimal biomorphic tissue analogs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.