Abstract
Polyaniline/multi-walled carbon nanotube composites (PANI/MWCNT), with various concentration of multi-walled carbon nanotube, were synthesized. Several Schottky diodes were fabricated, where PANI or PANI/MWCNT composites, aluminum, and gold were used as semiconductor, Schottky contact, and ohmic contact, respectively. Then current–voltage characteristics of the fabricated diodes were measured at room temperature and within the bias range of −5 to +5 V. The measurements were repeated three times for each sample to verify repeatability of experiment. The obtained results show that by increasing the MWCNT concentration, the current intensity increases. Furthermore, I-V characteristics of pure polyaniline Schottky diode follows the thermionic emission mechanism while the I-V characteristics of Schottky diodes based on PANI/MWCNT composites show two distinct power law regions. At lower voltages, the mechanism follows Ohm’s Law, whereas at higher voltages, the mechanism is compatible with space charge limited conduction emission mechanism. The parameters of Schottky diodes were determined, and it was observed that critical voltage decreased when the concentration of MWCNT in the composite increased.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have