Abstract

The Poisson’s equation and drift–diffusion equations are used to simulate the current–voltage characteristics of Schottky diode with an inverse doped surface layer. The potential inside the bulk semiconductor near the metal–semiconductor contact is estimated by simultaneously solving these equations, and current as a function of bias through the Schottky diode is calculated for various inverse layer thicknesses and doping concentrations. The Schottky diode parameters are then extracted by fitting of simulated current–voltage data into thermionic emission diffusion equation. The obtained diode parameters are analyzed to study the effect of inverse layer thickness and doping concentration on the Schottky diode parameters and its behavior at low temperatures. It is shown that increase in inverse layer thickness and its doping concentration give rise to Schottky barrier height enhancement and a change in the ideality factor. The temperature dependences of Schottky barrier height and ideality factor are studied. The effect of temperature dependence of carrier mobility on the Schottky diode characteristics is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call