Abstract
Room-temperature negative differential resistance (NDR) characteristics are observed in a nanocrystalline Si quantum dot (nc-Si QD) floating-gate MOS structure, which is fabricated by plasma-enhanced chemical vapor deposition. Clear multi-NDR peaks for the electrons and holes, shown in the I—V curves, which are significant for the application of multiple value memory and logic, are proved to be induced by electron and hole resonant tunneling into the nc-Si QDs from the substrate. The calculation results indicate that these NDR characteristics should be associated with the Coulomb blockade effect and the quantum confinement effect of the nc-Si QDs. Furthermore, low-temperature I—V characteristics are also investigated to confirm the room-temperature results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have