Abstract

AbstractIn this study, a series of ocean observing system simulation experiments (OSSEs) are conducted in support of the tropical Pacific observing system (TPOS) 2020 Project (TPOS 2020) which was established in 2014, with aims to develop a more sustainable and resilient observing system for the tropical Pacific. The experiments are based on an ocean data assimilation system that is under development at the Joint Center for Satellite Data Assimilation (JCSDA) and the Environmental Modeling Center (EMC)/National Centers for Environmental Prediction (NCEP). The atmospheric forcing and synthetic ocean observations are generated from a nature run, which is based on a modified CFSv2 with a vertical ocean resolution of 1-meter near the ocean surface. To explore the efficacy of TAO/TRITON and Argo observations in TPOS, synthetic ocean temperature and salinity observations were constructed by sampling the nature run following their present distributions. Our experiments include a free run with no “observations” assimilated, and assimilation runs with the TAO/TRITON and Argo synthetic observations assimilated separately or jointly. These experiments were analyzed by comparing their long-term mean states and variabilities at different time scales [i.e., low-frequency (>90 days), intraseasonal (20~90 days), and high-frequency (<20 days)]. It was found that (1) both TAO/TRITON and especially Argo effectively improve the estimation of mean states and low-frequency variations; (2) on the intraseasonal time scale, Argo has more significant improvements than TAO/TRITON (except for regions close to TAO/TRITON sites); (3) on the high-frequency time scale, both TAO/TRITON and Argo have evident deficits (although for TAO/TRITON, limited improvements were present close to TAO/TRITON sites).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.