Abstract
Abstract Atmospheric heat transport (AHT) is an important piece of our climate system but has primarily been studied at monthly or longer time scales. We introduce a new method for calculating zonal-mean meridional AHT using instantaneous atmospheric fields. When time averaged, our calculations closely reproduce the climatological AHT used elsewhere in the literature to understand AHT and its trends on long time scales. In the extratropics, AHT convergence and atmospheric heating are strongly temporally correlated suggesting that AHT drives the vast majority of zonal-mean atmospheric temperature variability. Our AHT methodology separates AHT into two components (eddies and the mean meridional circulation) which we find are negatively correlated throughout most of the mid- to high latitudes. This negative correlation reduces the variance in the total AHT compared to eddy AHT. Last, we find that the temporal distribution of the total AHT at any given latitude is approximately symmetric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.