Abstract

This paper presents stability analysis for a class of uncertain nonlinear systems and a method for designing robust fuzzy controllers to stabilize the uncertain nonlinear systems. First, the Takagi–Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the uncertain nonlinear system. Next, new stability conditions for a generalized class of uncertain systems are derived from robust control techniques such Linear Matrix Inequalities (LMIs). The derived stability conditions are used to analyze the stability of Takagi and Sugeno’s fuzzy control systems with uncertainty which can be regarded as a generalized class of uncertain nonlinear systems. The design method employs the so-called Parallel Design Approach (PDA). TS fuzzy systems are classified into three families based on the input matrices and a robust fuzzy controller’s synthesis procedure is given for each family. In each family, sufficient conditions are derived for robust stabilization in the sense of Taylor series stability, for the TS fuzzy system with parametric uncertainties. Important issues for the stability analysis and design are remarked. The effectiveness of the proposed controller design methodology is finally demonstrated through the two different models of Wind Energy Systems (WES) to illustrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.