Abstract

The analysis of the return probability is one of the most essential and fundamental topics in the study of classical random walks. In this paper, we study the return probability of quantum and correlated random walks in the one-dimensional integer lattice by the path counting method. We show that the return probability of both quantum and correlated random walks can be expressed in terms of the Legendre polynomial. Moreover, the generating function of the return probability can be written in terms of elliptic integrals of the first and second kinds for the quantum walk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.