Abstract

AbstractThis paper studies the dynamical and asymptotic aspects of high‐dimensional expanders. We define a stochastic process on simplicial complexes of arbitrary dimension, which detects the existence of homology in the same way that a random walk on a finite graph reflects its connectedness. Through this, we obtain high‐dimensional analogues of graph properties such as bipartiteness, return probability, amenability and transience/recurrence. In the second part of the paper we generalize Kesten's result on the spectrum of regular trees, and of the connection between return probabilities and spectral radius. We study the analogue of the Alon‐Boppana theorem on spectral gaps, and exhibit a counterexample for its high‐dimensional counterpart. We show, however, that under some assumptions the theorem does hold ‐ for example, if the codimension‐one skeletons of the complexes in question form a family of expanders. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 225–261, 2017

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.