Abstract

Low-aluminum composition AlGaN/GaN double-barrier resonant tunneling structures were grown by plasma-assisted molecular-beam-epitaxy on free-standing c-plane GaN substrates grown by hydride-vapor phase epitaxy. Clear, exactly reproducible, negative-differential resistance signatures were observed from 4 × 4 μm2 devices at 1.5 V and 1.7 V at 77 K. The relatively small value of the maximum peak-to-valley ratio (1.03) and the area dependence of the electrical characteristics suggest that charge transport is affected by leakage paths through dislocations. However, the reproducibility of the data indicates that electrical traps play no significant role in the charge transport in resonant tunneling diodes grown by molecular-beam-epitaxy under Ga-rich conditions on free-standing GaN substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call