Abstract
Using a GaN nanorod template in a hydride vapor phase epitaxy (HVPE) system can manufacture a freestanding GaN (FS-GaN) substrate with threading dislocation densities down to ~ 107 cm-2. In this letter, we report InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) grown on this FS-GaN substrate. The defect densities in the homoepitaxially grown LEDs were substantially reduced, leading to improved light emission efficiency. Compared with the LED grown on sapphire, we obtained a lower forward voltage, smaller diode ideality factor, and higher light-output power in the same structure grown on FS-GaN. The external quantum efficiency (EQE) of LEDs grown on FS-GaN were improved especially at high injection current, which brought the efficiency droop phenomenon greatly reduced at high current density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.