Abstract

We have investigated the microstructure of homoepitaxial N-polar GaN layers grown by rf-plasma-assisted molecular beam epitaxy on freestanding GaN substrates. The structural quality of the epitaxial layers improves when the sheet density of oxygen present on the substrate surface diminishes. An initial sheet density of oxygen of ~0.5 monolayer (ML) results in a highly defective epitaxial layer, while an epitaxial layer with no visible threading dislocations was grown on a substrate with an initial oxygen sheet density of ~0.08ML. The significant reduction in oxygen was achieved by using several cycles of Ga deposition and thermal desorption prior to the start of epitaxial growth combined with an initial ultrathin 15-Å AlN nucleation layer. These results indicate that reducing the density of oxygen on the surfaces of freestanding N-polar GaN substrates is vital for obtaining high quality homoepitaxial N-polar GaN layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.