Abstract

ABSTRACTWe have studied by TEM the thermal evolution of a population of extrinsic defects composed of a mixture of both perfect and faulted dislocation loops (PDL's and FDL's respectively). It is shown that, when isolated from an external sink, the FDL's trap the Si interstitial atoms emitted by PDL's. When a highly recombining surface is located close to the defects, it preferably « pumps » the PDL's. On the contrary, injecting Si(int)'s from the surface helps stabilizing the PDL's while the FDL's grow. These experiments clearly show that FDL's are more stable, i.e. have higher binding energies than PDL's.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call