Abstract

A study of end-of-range (EOR) dislocation loops in silicon implanted with 50 keV 1016 Si/cm2 was carried out by using transmission electron microscopy. Two kinds of post-implantation anneals were performed, furnace anneals at 850 °C and rapid thermal anneals at 1000 °C. We observed the ripening for two types of EOR dislocation loops. They were faulted Frank dislocation loops and perfect prismatic dislocation loops. By separating their size distribution profiles, we found that their distribution profiles are different from that of conventional Ostwald ripening for precipitates. A long tail distribution profile was formed for perfect prismatic dislocation loops. We analyzed the distribution profiles and found that the size distribution profile of faulted Frank dislocation loops could be well fitted by a normal Gaussian probability function and that of perfect prismatic dislocation loops by a log-normal Gaussian probability function. Measurement of the total number of interstitials within both types of loops shows that the ripening of EOR dislocation loops is conservative. Knowing the size-distribution profiles of the EOR dislocation loops, it was possible to perform an analysis of the ripening behavior of the two types of dislocation loops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.