Abstract
Adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from AMPKα2+/+ and AMPKα2-/- mice. Myotubes from AMPKα2-/- mice had lower basal oleic acid and glucose oxidation compared to myotubes from AMPKα2+/+ mice. However, the relative response to mitochondrial uncoupling was increased for oleic acid oxidation. Incorporation of acetate into lipids was also lower in myotubes from AMPKα2-/- mice. Proteomics analysis revealed that AMPKα2-/- myotubes had upregulated pathways related to mitochondrial function and fatty acid oxidation, and decreased pathways related to fatty acid biosynthesis. In conclusion, ablation of AMPKα2 catalytic subunit in skeletal muscle cells resulted in reduced basal oxidation of glucose and fatty acids, however upregulated pathways related to mitochondrial function and fatty acid oxidation and reduced lipid formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have