Abstract

Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor transcription factor that has an important role in controlling cardiac metabolic gene expression. We determined whether mice lacking PPARalpha (PPARalpha (-/-) mice) have alterations in cardiac energy metabolism. Rates of palmitate oxidation were significantly decreased in isolated working hearts from PPARalpha (-/-) hearts compared with hearts from age-matched wild type mice (PPARalpha (+/+) mice), (62 +/- 12 versus 154 +/- 65 nmol/g dry weight/min, respectively, p < 0.05). This was compensated for by significant increases in the rates of glucose oxidation and glycolysis. The decreased fatty acid oxidation in PPARalpha (-/-) hearts was associated with increased levels of cardiac malonyl-CoA compared with PPARalpha (+/+) hearts (15.15 +/- 1.63 versus 7.37 +/- 1.31 nmol/g, dry weight, respectively, p < 0.05). Since malonyl-CoA is an important regulator of cardiac fatty acid oxidation, we also determined if the enzymes that control malonyl-CoA levels in the heart are under transcriptional control of PPARalpha. Expression of both mRNA and protein as well as the activity of malonyl-CoA decarboxylase, which degrades malonyl-CoA, were significantly decreased in the PPARalpha (-/-) hearts. In contrast, the expression and activity of acetyl-CoA carboxylase, which synthesizes malonyl-CoA and 5'-AMP-activated protein kinase, which regulates acetyl-CoA carboxylase, were not altered. Glucose transporter expression (GLUT1 and GLUT4) was not different between PPARalpha (-/-) and PPARalpha (+/+) hearts, suggesting that the increase in glycolysis and glucose oxidation in the PPARalpha null mice was not due to direct effects on glucose uptake but rather was occurring secondary to the decrease in fatty acid oxidation. This study demonstrates that PPARalpha is an important regulator of fatty acid oxidation in the heart and that this regulation of fatty acid oxidation may in part occur due to the transcriptional control of malonyl-CoA decarboxylase.

Highlights

  • Peroxisome proliferator-activated receptor ␣ (PPAR␣) is a nuclear receptor transcription factor that has an important role in controlling cardiac metabolic gene expression

  • This study demonstrates that PPAR␣ is an important regulator of fatty acid oxidation in the heart and that this regulation of fatty acid oxidation may in part occur due to the transcriptional control of malonyl-CoA decarboxylase

  • Cardiac Function—Various parameters of heart function in the PPAR␣ (Ϫ/Ϫ) and PPAR␣ (ϩ/ϩ) mouse hearts perfused at a 7-mm Hg preload and 50-mm Hg afterload are shown in Functional parameters were measured in isolated working hearts from PPAR␣ (Ϫ/Ϫ) and wild type (ϩ/ϩ) controls perfused in 7-mm Hg preload and 50-mm Hg afterload for 30 min

Read more

Summary

Introduction

Peroxisome proliferator-activated receptor ␣ (PPAR␣) is a nuclear receptor transcription factor that has an important role in controlling cardiac metabolic gene expression. Since malonyl-CoA is an important regulator of cardiac fatty acid oxidation, we determined if the enzymes that control malonyl-CoA levels in the heart are under transcriptional control of PPAR␣. Expression of both mRNA and protein as well as the activity of malonyl-CoA decarboxylase, which degrades malonyl-CoA, were significantly decreased in the PPAR␣ (؊/؊) hearts. PPAR␣ is expressed in the heart and is involved in the transcriptional regulation of a number of genes involved in cardiac fatty acid oxidation These include medium chain acylCoA dehydrogenase, fatty acid binding proteins, fatty acid transporters, 3-ketoacyl-CoA thiolase, and muscle carnitine palmitoyltransferase I [3,4,5,6,7,8,9]. A recent study has shown that treatment of rats with a PPAR␣ agonist, Wy-14643, increases MCD mRNA expression in the heart, the effects of this treatment on malonylCoA levels and fatty acid oxidation rates have not been determined [25]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call