Abstract
Recently, in-depth learning about computer vision and object classification tasks has surpassed other machine learning (ML) algorithms. This algorithm, alike similar ML algorithms, requires a dataset for training. In most real cases, developing an appropriate dataset is expensive and time-consuming. Also, in some situations, providing the dataset is unsafe or even impossible. In this paper, we proposed a novel framework for traffic sign recognition using synthetic data and deep learning. The main feature of the proposed method is its independence from the real-life dataset, which leads to high accuracy in the real test dataset. Creating one-by-one synthetic data is more labor-intensive and costlier than providing real data. To tackle the issue, the proposed framework uses a procedural method, which gives the possibility to develop countless high-quality data that are close enough to the real data. Due to its procedural nature, this framework can be easily edited and tuned.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have