Abstract
Starch, a natural storage polysaccharide of plant kingdom, has many industrial applications. However, native starch has some inherent shortages, which can be overcome by structural modification. Dialdehyde starch, one kind of oxidized starch produced by periodate oxidation, has good physical properties and bioactivities with wide applications in different fields. Dialdehyde starch is typically achieved by oxidizing native starch slurry through periodate oxidation under controlled reaction conditions. Several factors including the source of starch, the type of oxidant, the molar ratio of oxidant to starch, reaction temperature, reaction time and solution pH value can influence the synthesis of dialdehyde starch. Dialdehyde starch shows different spectroscopic/chromatographic characters and physicochemical properties from native starch. Moreover, dialdehyde starch exhibits good antioxidant activity, antimicrobial activity and cross-linking property. Based on these functional properties, dialdehyde starch has shown application potentials in food packaging, thermoplastic production, enzyme immobilization, heavy metal ion adsorption, drug delivery, wood adhesion and leather tanning. In this review, the preparation conditions, structural characteristics, physicochemical properties, functional properties and potential applications of dialdehyde starch are summarized for the first time. The future research and development prospects of dialdehyde starch are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.