Abstract

Indium surface segregation is evidenced in real time by reflection high-energy electron diffraction (RHEED) during the molecular beam epitaxial growth of AlSb on InAs(Sb). The resulting interface width is determined from the RHEED specular beam intensity variation during the growth. It extends over several nanometers and increases with the growth temperature. Band structure simulations show that the indium segregation leads to a strong localization of the wave function associated to the first bound hole level at the AlSb on InAs(Sb) interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call