Abstract

Charge carrier mobilities in ordered organic semiconductors are limited by inherent vibrational phonons that scatter carriers. To improve a material's intrinsic mobility, restricting particularly detrimental modes with molecular substitutions may be a viable strategy. Here, we develop a probabilistic temperature-dependent displacement model that we couple with the density functional dimer projection protocol to predict effective electronic coupling fluctuations. The phonon-induced deviations from the equilibrium electronic couplings are used to infer the detriment of low-frequency phonons on charge carrier mobilities in a set of organic single crystals. We show that asymmetric sliding motions in pentacene and 2,6-diphenylanthracene induce large electronic coupling fluctuations, whereas seesawlike motions cause large fluctuations in rubrene, 9,10-diphenylanthracene, and, 2,6-diphenylanthracene. Vibrational analyses revealed that the asymmetric sliding phonon in rubrene persists only in the low-mobility direction of the crystal. Therefore, rubrene's intrinsic high mobility is likely due to the absence of this source of disorder in its high-mobility conduction channels. This model can be used to identify particularly harmful or helpful phonons in crystalline materials and may provide design rules for developing materials with intrinsically low disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.