Abstract

We summarize our recent progresses in developing first-principles methods for predicting the intrinsic charge mobility in carbon and organic nanomaterials, within the framework of Boltzmann transport theory and relaxation time approximation. The electron-phonon couplings are described by Bardeen and Shockley's deformation potential theory, namely delocalized electrons scattered by longitudinal acoustic phonons as modeled by uniform lattice dilation. We have applied such methodology to calculating the charge carrier mobilities of graphene and graphdiyne, both sheets and nanoribbons, as well as closely packed organic crystals. The intrinsic charge carrier mobilities for graphene sheet and naphthalene are calculated to be 3 × 10(5) and ∼60 cm(2) V(-1) s(-1) respectively at room temperature, in reasonable agreement with previous studies. We also present some new theoretical results for the recently discovered organic electronic materials, diacene-fused thienothiophenes, for which the charge carrier mobilities are predicted to be around 100 cm(2) V(-1) s(-1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.