Abstract
Cortical field potentials were recorded by electrodes implanted chronically on the surface and at a 2.0 mm depth in various cortical areas in the left hemisphere in the rat during self-paced movements of the right forelimb. A surface-negative (s-N), depth-positive (d-P) cortical field potential appeared about 1.0 s (range: 0.5-1.5 s) before movement onset in the rostral (RFA) and caudal (CFA) forelimb areas of the motor cortex, and the somatosensory cortex, but not in the occipital cortex. Bipolar recording of electromyographic activities induced by the electrical stimulation of various cortical loci was also performed by pairs of steel electrodes inserted in the face, trunk, forelimb and hindlimb muscles on both sides. The stimulation of the forelimb motor cortex activated the face and/or forelimb muscles, while that of the somatosensory cortex generally activated several body part muscles including the forelimb muscle. Stronger stimulus intensity was requested to elicit the activities of most of the ipsilateral muscles to the cortex stimulated than the contralateral ones. The minimum intensity for inducing the forelimb muscle activity was lowest in the CFA among cortical areas producing the activity. The stimulation of cortical loci in which the s-N, d-P potential was recorded could induce muscle activities in the forelimb contralateral to the stimulation. It is suggested that the s-N, d-P potential is the readiness potential for activating muscles to initiate movement in the rat forelimb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.