Abstract
A complex balance between extrinsic neural and intrinsic mechanisms is responsible for regulating atrioventricular (AV) conduction. We hypothesized that atrial excitation interval is shortened during dynamic exercise by extrinsic cardiac autonomic activity and that if AV conduction time responds inversely to fluctuation in atrial rhythm, ventricular excitation interval will be maintained at the predetermined cardiac cycle length. To examine such inverse relationship between PP interval and the subsequent change in PR interval (DeltaPR), we analyzed the beat-to-beat changes in PP, PR, and RR intervals during stair-stepping exercise for 10 min in 11 sedentary and 9 trained subjects. In the sedentary group, the average PR interval significantly shortened during exercise, in parallel with the reduction in the average PP and RR intervals. The variance of PP and RR intervals was also significantly decreased during exercise. The reduction in the variance of RR interval was, however, much greater than that of PP interval, implying that AV conduction time changes inversely to fluctuation in atrial excitation rhythm. Indeed, the variance of PR interval was augmented during exercise and there was a clear inverse relationship between PP and DeltaPR intervals. Although trained subjects were characterized by their lower heart rate response during dynamic exercise, the responses in the variability of PP, PR, and RR intervals were fundamentally identical with those in sedentary subjects. We conclude that the AV nodal mechanism that operates at a higher level of heart rate during dynamic exercise may cancel fluctuation in atrial excitation interval and keep ventricular excitation rhythm at the predetermined cardiac cycle length.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.