Abstract

In this study, a ratioless full-complementary 12-transistor static random access memory (SRAM) was developed and measured to evaluate its operation under an ultra low supply voltage range. The ratioless SRAM design concept enables a memory cell design that is free from the consideration of the static noise margin (SNM). Furthermore, it enables a SRAM function without the restriction of transistor parameter (W/L) settings and the dependence on the variability of device characteristics. The test chips that include both conventional 6-transistor SRAM cells and the ratioless full-complementary 12-transistor SRAM cells were developed by a 180 nm CMOS process to compare their stable operations under an ultralow supply voltage condition. The measured results show that the ratioless full-complementary 12-transistor SRAM has superior immunity to device variability, and its inherent operating ability at the supply voltage of 0.22 V was experimentally confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.