Abstract

The ultimate aim of a memory designer is to design a memory cell which could consume low power with high data stability in the deep nanoscale range. The implementation of Very Large-Scale Integration (VLSI) circuits using MOSFETs in nanoscale range faces many issues such as increasing of leakage power and second-order effects that are easily affected by the PVT variation. Hence, it is essential to find the best alternative of MOSFET for deep submicron design. The Carbon Nanotube Field Effect Transistor (CNTFET) can eradicate all the demerits of MOSFET and be the best replacement of MOSFET for nanoscale range design. In this paper, a 10T CNTFET Static Random Access Memory (SRAM) cell is proposed. The power consumption and Static Noise Margin (SNM) are analyzed. The power consumption and stable performance of the proposed 10T CNTFET SRAM cell are compared with that of conventional 10T CNTFET SRAM cell. The power and stability analyses of the proposed 10T and conventional 10T CNTFET SRAM cells are carried out for the CNTFET parameters such as pitch and chiral vector ([Formula: see text]). The power and SNM analyses are carried out for [Formula: see text]20% variation of oxide thickness (Hox), different dielectric constant (Kox). The supply voltage varies from 0.9[Formula: see text]V to 0.6[Formula: see text]V and temperature varies from 27∘C to 125∘C. The simulation results show that the proposed 10T CNTFET SRAM cell consumes lesser power than conventional 10T CNTFET SRAM cell during the write, hold and read modes. The write, hold and read stability of the proposed 10T CNTFET SRAM cell are higher as compared with that of conventional 10T CNTFET SRAM. The conventional and proposed 10T SRAM cells are also implemented using MOSFET. The stability and power performance of proposed 10T SRAM cell is also as good as conventional 10T SRAM for MOSFET implementation. The proposed 10T SRAM cell consumes lesser power and gives higher stability than conventional 10T SRAM cell in both CNTFET and MOSFET implementation. The simulation is carried out using Stanford University 32[Formula: see text]nm CNTFET model in HSPICE simulation tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call