Abstract

Abstract In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.