Abstract
Dense carbon nanotubes (CNTs, 30–50 nm in diameter, 6–8 μm in length) were grown via a thermal chemical vapor deposition process on titanium treated carbon cloths. Catalysts in the form of either nano-scale platinum (Pt) or platinum-ruthenium (Pt–Ru) particles were then deposited on the CNT surfaces by pulse-mode potentiostatic electrodeposition. Surface morphologies of the prepared electrodes were examined by scanning electron microscopy and transmission electron microscopy. Well dispersed catalysts, Pt alone (particle sizes of 7–8 nm) or Pt–Ru (particle sizes of 3–4 nm) nanoparticles, were successfully electrodeposited on the CNT surfaces in citric acid aqueous solutions. In addition, electrochemical characteristics of the specimens were investigated by cyclic voltammetry in argon saturated sulfuric acid aqueous solutions and in mixed sulfuric acid and methanol aqueous solutions. The catalytic activity of the Pt–Ru/CNTs electrode for methanol oxidation was 1038.25 A g − 1 Pt in a mixed solution containing 0.5 M sulfuric acid and 1.0 M methanol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Hydrogen Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.