Abstract

Accurate, long-term timing measurements of pulsars provide a powerful method to study a variety of astrophysical phenomena. For “normal”, slow pulsars, the dominant factors that limit the timing precision are the intrinsic timing noise and single pulse “jitter” (e.g. Cordes 1993). In fact, because the pulse jitter surpasses radiometer noise for sufficiently strong pulsars and no further improvement of the timing precision can be achieved by increasing the antenna gain, the timing of such sources can be very efficiently conducted with suitably equipped medium-size radiotelescopes.We have been timing slow pulsars with the 32-m TCfA radiotelescope in Toruń, Poland, since July 1996, using a dual-channel, circular polarization L-band receiving system at frequencies around 1.7 GHz, and a 2 × 64 × 3 MHz channel pulsar backend, the Penn State Pulsar Machine - 2 (PSPM-2; for more details, see Konacki et al. 1999). Our gradually expanding source list currently includes 88 pulsars timed once a week with a millisecond precision using the observatory’s UTC-calibrated H-maser clock. Data analysis is routinely performed with the TEMPO software package. With a particularly dense, weekly sampling and a ≤1 ms timing precision, the TCfA program has a sensitivity to detect previously overlooked short period, low orbital inclination binaries, as well as very low-mass, planetary companions. In addition, it will be very useful in identifying and monitoring pulsar timing glitches and other forms of the timing noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call