Abstract

We propose a novel method for observing the gravitational wave signature of super-massive black hole (SMBH) mergers. This method is based on detection of a specific type of gravitational waves, namely gravitational wave burst with memory (BWM), using pulsar timing. We study the unique signature produced by BWM in anomalous pulsar timing residuals. We show that the present day pulsar timing precision allows one to detect BWM due to SMBH mergers from distances up to 1 Gpc (for case of equal mass 10^8 Msun SMBH). Improvements in precision of pulsar timing together with the increase in number of observed pulsars should eventually lead to detection of a BWM signal due to SMBH merger, thereby making the proposed technique complementary to the capabilities of the planned LISA mission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call