Abstract
An Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) benchmark has been established over recent years to satisfy an increasing demand from the nuclear community for best-estimate predictions accompanied by uncertainty and sensitivity analyses. The main objectives of the OECD/NEA benchmark activity are to determine uncertainties in modeling for reactor systems using best-estimate methods under steady-state and transient conditions and to quantify the impact of these uncertainties for each type of calculation in multiphysics analyses. In terms of light water reactor analyses, an international uncertainty analysis, “Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs” is currently in progress, being coordinated by the OECD/NEA. In the neutronic phases of the benchmark, the uncertainty due to nuclear data is being studied for various LWR types. The LCT086 benchmark, which is a VVER-type reactor criticality benchmark experiment, has been identified to form part of the validation matrix for the uncertainty methodology development. Resulting from this, the main focus of the present work is to propagate the uncertainty due to the nuclear data for two cases (LCT086/Case1 and LCT086/Case3) presented in the LCT086 benchmark. Both fuel assembly and core models were used for the analysis. The code package used to perform the calculations was SCALE 6.2.1. In particular, the function modules KENO-VI, SAMPLER, and TSUNAMI-3D of SCALE 6.2.1 were used. MCNP 6.1 was also used for continuous-energy criticality calculations. In addition to propagating the uncertainty due to the nuclear data, the uncertainty due to selected input parameters as bounded by the manufacturing tolerances were also propagated so that the modeling methods employed could be verified against those reported in the LCT086 benchmark. The results obtained for the nuclear data uncertainty were further compared with nuclear data uncertainty propagation results for the OECD/NEA UAM Kozloduy-6 reactor system. The uncertainty in the multiplication factor k eff is reported in pcm together with the main contributors to the uncertainty from the nuclear data reported in %Δk / k .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.