Abstract

In recent years, there has been an increasing demand from nuclear research, industry, safety, and regulation for best estimate predictions to be provided with their confidence bounds. Consequently, Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency (NEA) has initiated an international uncertainty analysis in modeling (UAM) benchmark focused on uncertainty analysis in best-estimate coupled code calculations for design, operation, and safety analysis of light water reactors (LWRs). The title of this benchmark is “OECD/NEA UAM-LWR benchmark”. Reference systems and scenarios for coupled code analysis are defined to study the uncertainty effects for all stages of the system calculations. Measured data from plant operation are available for the chosen scenarios. The proposed technical approach is to establish a benchmark for uncertainty analysis in best-estimate modeling and coupled multiphysics and multiscale LWR analysis, using as bases a series of well-defined problems with complete sets of input specifications and reference experimental data. The objective is to determine the uncertainty in LWR system calculations at all stages of a coupled reactor physics/thermal hydraulics calculation. The full chain of uncertainty propagation from basic data, engineering uncertainties, across different scales (multi-scale), and physics phenomena (multiphysics) is tested on a number of benchmark exercises for which experimental data are available and for which the power plant details have been released. The principal idea is (a) to subdivide the complex system/scenario into several steps or exercises, each of which can contribute to the total uncertainty of the final coupled system calculation, (b) to identify input, output, and assumptions for each step, (c) to calculate the resulting uncertainty in each step and (d) to propagate the uncertainties in an integral system simulation for which high quality plant experimental data exist for the total assessment of the overall computer code uncertainty. The main scope covers uncertainty (and sensitivity) analysis (SA/UA) in best estimate modeling for design and operation of LWRs, including methods that are used for safety evaluations. As part of this effort, the development and assessment of different methods or techniques to account for the uncertainties in the calculations are to be investigated and reported to the participants. The general frame of the OECD/NEAUAM-LWR benchmark consists of three phases with different exercises for each phase: Phase I (neutronics phase), Phase II (core phase), and Phase III (system phase). The focus of Phase I is on propagating uncertainties in standalone neutronics calculations and consists of the following three exercises.

Highlights

  • The proposed technical approach is to establish a benchmark for uncertainty analysis in best-estimate modeling and coupled multiphysics and multiscale light water reactors (LWRs) analysis, using as bases a series of well-defined problems with complete sets of input specifications and reference experimental data

  • Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency (NEA) has initiated an international uncertainty analysis in modeling (UAM) benchmark focused on uncertainty analysis in best-estimate coupled code calculations for design, operation, and safety analysis of light water reactors (LWRs)

  • The proposed technical approach is to establish a benchmark for uncertainty analysis in best-estimate modeling and coupled multiphysics and multiscale LWR analysis, using as bases a series of well-defined problems with complete sets of input specifications and reference experimental data

Read more

Summary

Introduction

The proposed technical approach is to establish a benchmark for uncertainty analysis in best-estimate modeling and coupled multiphysics and multiscale LWR analysis, using as bases a series of well-defined problems with complete sets of input specifications and reference experimental data. Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency (NEA) has initiated an international uncertainty analysis in modeling (UAM) benchmark focused on uncertainty analysis in best-estimate coupled code calculations for design, operation, and safety analysis of light water reactors (LWRs). The general frame of the OECD/NEA UAM-LWR benchmark consists of three phases with different exercises for each phase: Phase I (neutronics phase), Phase II (core phase), and Phase III (system phase).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call