Abstract

The local environment and dynamics of compressed carbon dioxide (CO(2)) penetration in surfactant templated silica film synthesis is interpreted from the in situ fluorescence emission spectra of pyrene (Py) and a modified pyrene probe. Pyrene emission in cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) templated silica films is monitored immediately after casting and during processing with gaseous and supercritical (sc) CO(2) (17-172 bar, 45 °C). The solvatochromic emission spectra of pyrene in CTAB templated films suggest CO(2) penetration in both the micelle interface and its interior. An anchored derivative of pyrene, 1-pyrenehexadecanoic acid (C(16)-pyr), is established for probing CPB films, where the pyrene moiety is preferentially oriented toward the micelle interior, thus limiting quenching by the pyridinium headgroup of CPB. CO(2) processing of CPB templated silica films results in an increase in the time scale for probe mobility, suggesting an increased time scale of silica condensation through CO(2) processing. The mobility of C(16)-pyr increases with pressure from gaseous to sc CO(2) processing and persists for over 5 h for sc CO(2) processing at 172 bar and 45 °C compared to about 25 min for the unprocessed film. The delivery of CO(2) soluble solutes to specific regions of surfactant templated mesoporous materials is examined via the nonradiative energy transfer (NRET) between pyrene and CO(2)-solubilized naphthalene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call