Abstract

This article proposes a foaming method using supercritical carbon dioxide (scCO2) to obtain compostable bionanocomposite foams based on PLA and organoclay (C30B) where this bionanocomposite was fabricated by a previous hot melt extrusion step. Neat PLA films and PLA/C30B films (1, 2, and 3 wt.%) were obtained by using a melt extrusion process followed by a film forming process obtaining films with thicknesses between 500 and 600 μm. Films were further processed into foams in a high-pressure cell with scCO2 under constant conditions of pressure (25 MPa) and temperature (130 °C) for 30 min. Bionanocomposite PLA foams evidenced a closed cell and uniform cell structure; however, neat PLA presented a poor cell structure and thick cell walls. The thermal stability was significantly enhanced in the bionanocomposite foam samples by the good dispersion of nanoclays due to scCO2, as demonstrated by X-ray diffraction analysis. The bionanocomposite foams showed improved overall mechanical performance due to well-dispersed nanoclays promoting increased interfacial adhesion with the polymeric matrix. The water uptake behavior of bionanocomposite foams showed that they practically did not absorb water during the first week of immersion in water. Finally, PLA foams were disintegrated under standard composting conditions at higher rates than PLA films, showing their sustainable character. Thus, PLA bionanocomposite foams obtained by batch supercritical foaming seem to be a sustainable option to replace non-biodegradable expanded polystyrene, and they represent a promising alternative to be considered in applications such as food packaging and other products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.