Abstract
The potential of neat poly(lactic acid) (PLA) and PLA/cellulose nanocrystal (CNC) blown films in extending the shelf-life of crackers, a moisture-sensitive food product, was assessed. Product’s shelf-life, i.e., the time required by the crackers to reach its critical moisture content (CMC) of 8%, was determined experimentally from moisture content versus storage time plots at a constant temperature (25 °C) and various conditions of relative humidity (RH). Neither crackers within PLA nor PLA/CNC packages reached the CMC when stored below 50% RH at 25 °C, indicating that crackers packaged in both films were shelf stable at these conditions. Above this RH, the crackers inside both packages reached the CMC at different times, however crackers in CNC-based packages had approximately 40% longer shelf-life than those in neat PLA package. The shelf-life of crackers packaged in films predicted from various simulation mathematical models supported the experimental data that the crackers packaged in the PLA/CNC films had higher shelf-life compared to those packaged in neat PLA films; clearly demonstrating the potential of CNC-based films to extend the shelf-life of dry-foods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.