Abstract

The incorporation of nanoparticles can significantly enhance the properties of polymers. However, the industrial production of nanocomposites presents a technological challenge in achieving the proper dispersion of nanoparticles within the polymer matrix. In this work, a novel device is presented that can be seamlessly integrated with standard twin-screw extruders, enabling the application of ultrasonic vibration to molten polymeric material. The primary objective of this study is to experimentally validate the effectiveness of this technology in improving the dispersion of nanoparticles. To accomplish this, a comparative analysis was carried out between nanocomposites obtained through conventional compounding extrusion and those processed with the assistance of ultrasonic vibrations. The nanocomposites under investigation consist of a polypropylene (PP) matrix reinforced with nano clays (Cloisite 20A) at a target loading ratio of 5% by weight. To comprehensively evaluate the impact of the ultrasound-assisted compounding, various key properties were assessed, such as the melt flow index (MFI) to characterize the flow behavior, mechanical properties to evaluate the structural performance, oxygen barrier properties to assess potential gas permeability, and microstructure analysis using Scanning Electron Microscopy (SEM) for detailed morphology characterization. The results suggested an improvement in nanoparticle dispersion when using the ultrasound device, particularly when the intensity was adjusted to 60%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.