Abstract
Foamed polylactide (PLA), PLA–PBAT (poly (butylene adipate‐co‐terphathalate)) blend and their composites with CaCO3 were prepared in a batch process using supercritical carbon dioxide (CO2) at 12 MPa and 45°C. The solubility of CO2 and its diffusion patterns in different PLA samples was investigated. PLA systems had a relatively high CO2 solubility related to the carboxyl groups. CO2 desorption behaviors in PLA systems first followed the Fickian diffusion mechanism in short time and then decreased slowly to a plateau. The addition of both PBAT and CaCO3 into PLA impeded the desorption of CO2. In the presence of second phase PBAT, nanoparticles CaCO3 and dissolved CO2, the PLA crystallization behavior investigated by DSC technique was greatly changed. As the desorption time increased, the gas induced crystallinity slightly decreased in consequence of less CO2 content in each system and thus less plasticization effect. The cell morphology of foamed PLA and PLA composites showed interesting microstructure patterns. The prepared pure PLA foam exhibits a typical bimodal structure because of the foaming in both the amorphous and crystalline zones. With PBAT and CaCO3 into PLA, the composite foam presented significant increase in cell uniformity and cell density. With less CO2 content in each PLA sample, the cell structure showed interesting variation. Pure PLA foam presented transition from bimodal structure to more uniform cell structure with decreased cell density. In contract, PLA–PBAT foam show unfoamed regions because of none CO2 left in the separated PBAT phase. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.