Abstract

Two-dimensional coherent terahertz spectroscopy (2DCS) emerges as a valuable tool to probe the nature, couplings, and lifetimes of excitations in quantum materials. It thus promises to identify unique signatures of spin liquid states in quantum magnets by directly probing properties of their exotic fractionalized excitations. Here, we calculate the second-order 2DCS of the Kitaev honeycomb model and demonstrate that distinct spin liquid fingerprints appear already in this lowest-order nonlinear response χ_{yzx}^{(2)}(ω_{1},ω_{2}) when using crossed light polarizations. We further relate the off-diagonal 2DCS peaks to the localized nature of the matter Majorana excitations trapped by Z_{2} flux excitations and show that 2DCS thus directly probes the inverse participation ratio of Majorana wave functions. By providing experimentally observable features of spin liquid states in the 2D spectrum, our Letter can guide future 2DCS experiments on Kitaev magnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.