Abstract

Kitaev's honeycomb lattice spin model is a remarkable exactly solvable model, which has a particular type of spin liquid (Kitaev spin liquid) as the ground state. Although its possible realization in iridates and α-RuCl_{3} has been vigorously discussed recently, these materials have substantial non-Kitaev direct exchange interactions and do not have a spin liquid ground state. We propose metal-organic frameworks (MOFs) with Ru^{3+} (or Os^{3+}), forming the honeycomb lattice as promising candidates for a more ideal realization of Kitaev-type spin models, where the direct exchange interaction is strongly suppressed. The great flexibility of MOFs allows generalization to other three-dimensional lattices for the potential realization of a variety of spin liquids, such as a Weyl spin liquid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call