Abstract

There is a strong need for cost reduction in manufacturing crystalline silicon solar cells, and one of the approaches is to merge two steps of silicon wafer processing into one step without degrading the performance of solar cells. In this work, we intended to employ the spin-on doping (SOD) method for the purpose of dual tasks, phosphorus diffusion to form n+ emitters and antireflection coating (ARC) to reduce optical reflection. Different from the commercial SOD solutions based on SiO2, we used tetraethylorthosilicate (TEOS) to prepare SOD solutions containing different concentrations of phosphorus acid as the phosphorus doping source. We first investigated the dependence of the sheet resistance of the n+ emitters on the concentration of phosphorus acid in the SOD solution as well as the thermal diffusion temperature and time. It was found that all these three factors can effectively influence the sheet resistance of the n+ emitters, suggesting a relatively easier optimization process for forming n+ emitters using the SOD method. The SOD thin films formed after the thermal diffusion process were found to be SiO2 films. We then investigated the antireflection properties of the as-grown SOD thin films, and found that they can effectively reduce the optical reflection of silicon wafers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.