Abstract

In order to improve formulation of targeting chemotherapy, cisplatin-loaded magnetic solid lipid nanoparticles (MSLNs) were prepared. In present study, the deliberate loading of Fe3O4 magnetic nanoparticles (MNs) into cisplatin SLNs was developed. SLNs were produced by film scattering ultrasonic technique. The effects of two different loading procedures of MNs on the microstructure and physicochemical properties of MSLNs were investigated by transmission electron microscopy (TEM), zetasizer, infrared spectroscopy (IR), and fluorescence spectroscopy. In vitro drug release and cytotoxicity against human cervical carcinoma SiHa cells, in vivo tumor cell uptake and target tissue distribution of MSLNs under external magnetic field were investigated. The encapsulation efficiency of cisplatin and the content of MNs in procedure I SLNs were 69.20 ± 4.5% and 2.16 ± 0.53 mg/mL, respectively, which were higher than those of procedure II MSLNs. In procedure I, the MNs, which were combined with lipids during film formation, distributed in the middle of the lipid layer in SLNs. Differently, in procedure II, the MNs and cisplatin were contained in an interior compartment in SLNs, resulting from mixing with drugs during hydration of lipid film. The procedure I MSLNs had higher cytotoxicity than procedure II MSLNs or free cisplatin. With in vivo intratumoral administration, cisplatin concentration in the tumor tissue was maintained at higher level for MSLNs than that for free cisplatin, especially under external magnetic field. Procedure I, the developed deliberate MNs loading method, was superior over procedure II in cisplatin encapsulation efficiency, MNs content and cell cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.