Abstract
The Power dominating set is a minimum point of determination in a graph that can dominate the connected dots around it, with a minimum domination point. The smallest cardinality of a power dominating set is called a power domination number with the notation . The purpose of this study is to determine the Shackle operations graph value from several special graphs with a point as a link. The result operation graphs are: Shackle operation graph from Path graph , Shackle operation graph from Sikel graph , Shackle operation graph from Star graph . The method used in this paper is axiomatic deductive method in solving problems. Understanding the axiomatic method itself is a method of deductive proof principles that applies in mathematical logic by using theorems that already exist in solving a problem. In this paper begins by determining the paper object that is the Shackle point operations result graph. Next, determine the cardinality of these graphs. After that, determine the point that has the maximum degree on the graph as the dominator point of power domination. Then, check whether the nearest neighbor has two or more degrees and analyze its optimization by using a ceiling function comparison between zero forching with the greatest degree of graph. Thus it can be determined ϒp minimal and dominated. The results of the power domination number study on Shackle operation graph result with points as connectors are , for and ; , for and ; , for and .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.