Abstract
There are several statistical methods used to model the effect of predictor variables on categorical response variables, namely logistic regression and Multivariate Adaptive Regression Splines (MARS). However, neither MARS nor logistic regression allows multicollinearity on any predictor variables. This study applies the use of both methods to the simulation data with principal component analysis as an improvement in multicollinearity to find out which regression has better performance. The result of the analysis shows that MARS is very powerful in modeling research simulation data. Besides, based on the criteria of the number of significant major components, accuracy, sensitivity, and specificity values, MARS has more appropriate performance than logistic regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.