Abstract
Molded IGBT modules are widely used in low power motor drive applications due to their advantage like compactness, low cost, and high reliability. Thermo-mechanical stress is generally the main cause of degradation of IGBT modules and thus much research has been performed to investigate the effect of temperature stresses on IGBT modules such as temperature swing and steady-state temperature. The temperature swing duration is also an important factor from a real application point of view, but there is a still lack of quantitative study. In this paper, the impact of temperature swing duration on the lifetime of 600V, 30A, 3-phase molded Intelligent Power Modules (IPM) and their failure mechanisms are investigated. The study is based on the accelerated power cycling test results of 36 samples under 6 different conditions and tests are performed under realistic electrical conditions by an advanced power cycling test setup. The results show that the temperature swing duration has a significant effect on the lifetime of IGBT modules. Longer temperature swing duration leads to the smaller number of cycles to failure. Further, it also shows that the bond-wire crack is the main failure mechanism of the tested IGBT modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.