Abstract

Sympathetic cooling is one of the most promising techniques for producing ultracold molecules from precooled molecules. Previous researches have shown that it is inadequate to use the ultracold alkali-metal atoms as coolant for sympathetic cooling. To explore the possibility of ultracold alkali-earth-metal atoms as coolant, in this paper a theoretical investigation is performed of the cold collision dynamics for Xe-NH(X3∑-) system in magnetic fields. The interaction potential energies of Xe-NH complex are calculated respectively by using the single and double excitation coupled-cluster theory with the noniterative treatment of triple excitations[CCSD(T)] method and complete basis set limit extrapolated method. An analytic express of potential energy surface (PES) is given for the first time. A single global minimum value occurs at R=7.14a0, θ=102.76° with an energy of-153.54 cm-1, and the PES has a weak anisotropy. Combine the ab initio PES with quantum scattering theory, then the cold collisional dynamics of Xe-NH system in a magnetic field will be studied. The elastic and inelastic transition cross sections and their ratios of NH molecules in the lowest low-field following state (n=0, mj=1) under different magnetic fields and collisional energies are calculated. The results show that the elastic cross section is independent of magnetic field, and the inelastic cross section changes with magnetic field, especially at an ultracold temperature. A common rule of thumb is that to successfully implement cooling, the ratio of elastic cross section to inelastic cross section needs to reach 100 at least. The results suggest that it is likely to be a challenging work to perform sympathetic cooling of NH molecule by ultracold Xe atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.